金沙澳门官网-澳门老金沙平台-金沙官网登陆|欢迎您
做最好的网站

金沙资讯

当前位置:金沙澳门官网 > 金沙资讯 > 摩尔定律已死,半导体行业何去何从

摩尔定律已死,半导体行业何去何从

来源:http://www.chuanghui2005.com 作者:金沙澳门官网 时间:2019-08-06 01:46

车云按:下个月,全球半导体行业将正式认可一个已经被讨论许久的问题:从上世纪60年代以来一直在推动IT行业发展的摩尔定律正在走向终结。正式抛弃摩尔定律的半导体行业将何去何从?《自然》杂志近日发表文章对此进行了探讨。

澳门老金沙平台 1计算设备体积随着半导体工业发展呈指数式缩小

澳门老金沙平台 2

在“患病多年”后,摩尔定律于51岁“寿终正寝”。

摩尔定律可以说是整个计算机行业最重要的定律,它其实是一个预言:每两年微处理器的晶体管数量都将加倍——意味着芯片的处理能力也加倍。这种指数级的增长,促使上世纪70年代的大型家庭计算机转化成80、90年代更先进的机器,然后又孕育出了高速度的互联网、智能手机和现在的车联网、智能冰箱和自动调温器等。

1965年,英特尔联合创始人戈登-摩尔观察到,集成电路中的元件集成度每12个月就能翻番。此外,确保每晶体管价格最低的单位芯片晶体管数量每12个月增长一倍。1965年,单位芯片50个晶体管可以带来最低的每晶体管成本。摩尔预计,到1970年,单位芯片可集成1000个元件,而每晶体管成本则将下降90%。

这个看起来自然而然的进程,实际很大程度也是人类有意控制的结果,芯片制造商有意按照摩尔定律预测的轨迹发展:软件开发商新的软件产品日益挑战现有设备的芯片处理能力,消费者需要更新为配置更高的设备,设备制造商赶忙去生产可以满足处理要求的下一代芯片。上世纪90年代以来,半导体行业每两年就会发布一份行业研发规划蓝图,协调成百上千家芯片制造商、供应商跟着摩尔定律走,这样的战略,有时也被称之为“更多摩尔”(More Moore),由于这份规划蓝图的存在,整个计算机行业才跟着摩尔定律按部就班地发展。

在对数据进行提炼和简化之后,这一现象就被称作“摩尔定律”:单位芯片晶体管数量每12个月增长一倍。

但现在,这种发展轨迹要告一段落了。由于同样小的空间里集成越来越多的硅电路,产生的热量也越来越大,这种原本两年处理能力加倍的速度已经慢慢下滑。此外,还有更多更大的问题也慢慢显现,如今顶级的芯片制造商的电路精度已经达到14纳米,比大多数病毒还要小。但是,全球半导体行业研发规划蓝图协会主席保罗·加尔吉尼( Paolo Gargini)表示:“到2020年,以最快的发展速度来看,我们的芯片线路可以达到2-3纳米级别,然而在这个级别上只能容纳10个原子,这样的设备,还能叫做一个‘设备’吗?”

摩尔的观察并非基于任何科学或工程原理。这仅仅反映了行业发展趋势。然而,在随后的发展中,半导体行业并没有将摩尔定律当作描述性、预测性的观察,而是视为规定性、确定性的守则。整个行业必须实现摩尔定律预测的目标。

恐怕不能。到了那样的级别,电子的行为将受限于量子的不确定性,晶体管将变得不可靠。在这样的前景下,尽管这方面已经有无数研究,但目前人们仍然无法找到可以替代如今的硅片技术的新的材料或技术。

然而,实现这一目标无法依靠侥幸。芯片开发是一个复杂过程,需要用到来自多家公司的机械、软件和原材料。为了确保所有厂商根据摩尔定律制定同样的时间表,整个行业遵循了共同的技术发展路线图。由英特尔、AMD、台积电、GlobalFoundries和IBM等厂商组成的行业组织半导体协会从1992年开始发布这样的路线图。1998年,半导体行业协会与全球其他地区的类似组织合作,成立了“国际半导体技术路线图”组织。最近的一份路线图于2013年发布。

下个月发布的行业研究规划蓝图将史无前例地不以摩尔定律为中心,相反,新的战略可能是“超越摩尔”(More than Moore ):与以往首先改善芯片、软件随后跟上的发展趋势不同,以后半导体行业的发展将首先看软件——从手机到超级电脑再到云端的数据中心——然后反过来看要支持软件和应用的运行需要什么处理能力的芯片来支持,由于新的计算设备变得越来越移动化,新的芯片中,可能会有新的一代的传感器、电源管理电路和其他的硅设备。

摩尔定律提出的预测早在很久之前就已出现过问题。1975年,摩尔本人更新了摩尔定律,将半导体行业的发展周期从12个月增加至24个月。在随后30年中,通过缩小芯片上元件的尺寸,芯片发展一直遵循着摩尔定律。

这种局势的转变,也改变了半导体行业围绕摩尔定律不再团结一致。“大家都不确定新的研究规划蓝图意味着什么,” 爱荷华大学计算机科学家丹尼尔·里德(Daniel Reed)表示。位于华盛顿DC的半导体行业协会(The Semiconductor Industry Association, SIA)代表所有美国半导体企业,已经表示不再参与全球半导体行业研究规划蓝图的章程,而是自行决定研发进度。

摩尔定律的终结

尽管摩尔定律已经走向黄昏,但这并不意味着半导体行业停止了发展。丹尼尔·里德将之与飞机制造行业进行比较:“现在的波音787并不比上世纪50年代的波音707快多少——但这两个型号的飞机可差太多了,波音787的创新体现在其他地方,比如全电子控制、碳纤维机身等,计算机行业也是如此,创新将会继续,但是会体现在更细小和更复杂的地方。”

澳门老金沙平台 350年来芯片晶体管和工作频率的指数式增长

摩尔定律的诞生

然而到00年代,很明显单纯依靠缩小尺寸的做法正走到尾声。不过,通过其他一些技术,芯片的发展仍然符合摩尔定律的预测。在90纳米时代,应变硅技术问世。在45纳米时代,一种能提高晶体管电容的新材料推出。在22纳米时代,三栅极晶体管使芯片性能变得更强大。

在1965年那篇著名的论文发表之前,戈登·摩尔(Gordon Moore) 是位于加州圣何塞的仙童半导体公司的研发总监,他已经预测了家用计算机、电子腕表、自动驾驶汽车以及“个人可移动沟通设备”——手机的诞生,但1965年那篇关于后来被称为“摩尔定律”的预测的论文真正使他名声大噪,这篇论文的核心是关于未来计算机行业发展的时间表,基于对仙童以及其他半导体企业的了解,摩尔预计每年每芯片的晶体管和其他电子元件的数量都将加倍。

不过,这些新技术也已走到末路。用于芯片制造的光刻技术正面临压力。目前,14纳米芯片在制造时使用的是193纳米波长光。光的波长较长导致制造工艺更复杂,成本更高。波长13.5纳米的远紫外光被认为是未来的希望,但适用于芯片制造的远紫外光技术目前仍需要攻克工程难题。

摩尔随后在加州圣塔克拉拉创办了英特尔,不过,在上述论文里,他显然高估了芯片更新换代的速度,1975年,他将这个预测修改到更为现实的两年加倍,随后,上世纪70年代和80年代,随着惠普个人电脑、Apple II计算机和IBMPC等个人消费产品的诞生,行业对芯片的处理能力要求越来越高,体积要求越来越小,摩尔的预言开始成真。

即使远紫外光技术得到应用,目前也不清楚,芯片集成度能有多大的提高。如果缩小至2纳米,那么单个晶体管将只有10个原子大小,而如此小的晶体管可靠性很可能存在问题。即使这些问题得到解决,功耗也将继续造成困扰。随着晶体管的连接越来越紧密,芯片功耗将越来越大。

澳门老金沙平台 4

应变硅和三栅极晶体管等新技术历经了10多年的研究才得到商用。远紫外光技术被探讨的时间更长。而成本因素也需要考虑。相应于摩尔定律,我们还有一个洛克定律。根据后一定律,芯片制造工厂的成本每4年就会翻番。新技术的发展可能将带来更高的芯片集成度,但制造这种芯片的工厂将有着高昂的造价。

澳门老金沙平台 5

近期,我们已经看到这些因素给芯片公司造成了现实问题。英特尔原计划于2016年在Cannonlake处理器中改用10纳米工艺,这小于当前Skylake芯片采用的14纳米工艺。去年7月,英特尔调整了计划。根据新计划,英特尔将推出另一代处理器Kaby Lake,并沿用此前的14纳米工艺。Cannonlake和10纳米工艺仍在计划之中,但被推迟至2017年下半年发布。

这样的发展是很昂贵的,芯片处理能力的提升意味着将更多的电路集成到芯片中来,从而电子可以从中移动地更快,这也对影印石版术(即将电路等微元件蚀刻到硅表面的技术)的要求越来越高。但是,在半导体行业发展的鼎盛时期,这并不是特别大的问题,企业发展出了一个可谓“自动升级”的循环流程:通过大规模制造和销售少数种类的芯片——主要是处理器和存储芯片——获得大量收入,然后投钱去改进工厂和设备,结果是在提升芯片性能的同时仍能降低价格,因此市场的需求也获得进一步提升。

与此同时,新增的晶体管变得越来越难用。80至90年代,新增晶体管带来的价值显而易见。奔腾处理器的速度远高于486处理器,而奔腾2代又远好于奔腾1代。只要处理器升级,计算机性能就会有明显的提升。然而在进入00年代之后,这样的性能提升逐渐变得困难。受发热因素影响,时钟频率无法继续提高,而单个处理器核心的性能只能实现增量式增长。因此,我们看到处理器正集成更多核心。从理论上来说,这提升了处理器的整体性能,但这种性能提升很难被软件所利用。

不过,很快这个市场驱动的模式也无法维持摩尔定律的高速度发展,芯片制造的过程变得过于复杂,常常包含几百个步骤,产品的升级意味着整个供应商和设备商需要在对的时间同时完成升级。“如果你需要40个家供应商而只有39家的产品有所升级,那么所有的事情都得停下来。” 德克萨斯州大学奥斯汀分校研究计算机行业的经济学家肯尼思·弗拉姆( Kenneth Flamm)表示。

半导体行业的新路线图

为了完成产业上下游的协调,全球半导体行业开始制作了第一次的行业研发规划蓝图,目的是“让所有人都能大致知道他们的进度应该到哪,如果在发展过程中遇到问题也可以警告所有同行,” 保罗·加尔吉尼表示。美国半导体行业1991年推出了这项蓝图和战略,时任英特尔技术战略总监的加尔吉尼成为该协会主席,1998年,来自欧洲、日本、台湾和韩国的半导体行业协会也都纷纷加入,该协会变成了国际组织。

这一系列困难表明,由摩尔定律驱动的半导体行业发展路线图即将终结。但摩尔定律日薄西山并不意味着半导体行业进步的终结。

“热死亡”

爱荷华州大学的计算机科学家丹尼尔-里德打了个比方:“想一想飞机行业发生了什么,一架波音787并不比上世纪50年代的707快多少,但是它们仍然是非常不同的两种飞机。”比如全电子控制和碳纤维机身。“创新绝对会继续下去,但会更细致和复杂。”

全球半导体行业协会遇到的第一个大的问题并非突然出现,加尔吉尼在1989年就曾经对此进行过警告,然而问题来临之时对行业还是造成了不小的冲击:芯片变得太小。

澳门老金沙平台,2014年,国际半导体技术路线图组织决定,下一份路线图将不再依照摩尔定律。《自然》杂志刊文称,将于下月发布的下一份路线图将采用完全不同的方法。

“曾经只要我们可以将所有的东西都缩小,问题就会自动解决,” 加州圣塔克拉拉第三个千年测试解决方案(Third Millennium Test Solutions)公司的CEO比尔·鲍特姆斯(Bill Bottoms)表示:“芯片会变得更快,耗能更少。”

新的路线图不再专注于芯片内部技术,而新方法被称作“比摩尔更多”。例如,智能手机和物联网的发展意味着,多样化的传感器和低功耗处理器的重要性将大幅提升。用于这些设备的高集成度芯片不仅需要逻辑处理和缓存模块,还需要内存和电源管理模块,用于GPS、移动网络和WiFi网络的模拟器件,甚至陀螺仪和加速计等MEMS器件。

但是到了本世纪初,微电路缩小到90纳米以下的时候,上述“自动解决”的方式开始不再灵光,随着越来越小的硅电路里的电子移动越来越快,芯片开始变得过热。

以往,这些不同类型的器件需要用到不同的制造工艺,以满足不同需求。而新路线图将提出,如何将这些器件集成在一起。整合不同制造工艺、处理不同原材料需要新的处理和支持技术。如果芯片厂商希望为这些新市场开发芯片,那么解决这些问题比提高芯片集成度更重要。

这是一个很严重的问题,处理器运行产生的热量很难消除,所以,芯片制造商选择了他们仅有的解决办法,加尔吉尼说,设备商不再追求绝对的计算次数,也就是处理器执行指令的速度。这样等于给芯片的电子运行速度加了上限,同时限制了产生的热量,2004年以来,这个运行速度的上限从没变过。

此外,新的路线图还将关注新技术,而不仅是当前的硅CMOS工艺。英特尔已宣布,在达到7纳米工艺之后,将不再使用硅材料。锑化铟和铟镓砷化合物都有着不错的前景。与硅相比,这些材料能带来更快的开关速度,而功耗也较低。碳材料,无论是碳纳米管还是石墨烯,也在继续被业内研究。

第二,虽然速度无法再提升,但为了将芯片性能按照摩尔定律进行提升,制造商对芯片内部电路重新进行了设计,每个芯片不再仅有一个处理器(或“内核”),而是两个、四个甚至更多(现在的电脑和手机的芯片很多都是四核或者八核处理器)。总的来说,原本一个千兆赫的内核现在可以分为四个250兆赫的内核。不过,在现实中,要使用八个处理器,意味着一个问题需要被分成八个部分,很多算法很难甚至无法做到这一点,“如果有部分没被利用,等于你的处理速度升级还是受到了限制,” 加尔吉尼说。

在许多备选材料中,二维材料“石墨烯”被看好。这种自旋电子材料通过翻转电子自旋来计算,而不是通过移动电子。这种“毫伏特”量级的电子开关比硅材料开关的速度更快,而且发热量更小。不幸的是这种电子材料还未走出实验室。

尽管如此,上述两大措施的结合,还是保证了制造商在发展进度上跟上了摩尔定律,现在的问题是,到2020年,当微电路缩小到会受到量子效应影响的时候会发生什么情况?下一步会是什么样子?“我们还没有解决方案,”参与制作新的行业规划蓝图的一名工程师陈安(音译)表示。

澳门老金沙平台 6石墨烯的扫描探针显微镜图像

对此,行业内并不是没有想法,一种可能是去发展完全新的范式,比如量子计算,或者神经形态计算(neuromorphic computing),前者对于某些计算有潜力达到指数级的提升,后者则是模拟大脑神经元的计算和处理方式。但是,这两种范式目前仍还都存在实验室研究阶段,而且很多研究人员认为,量子计算只对某些特定领域有优势,而处理日常任务仍然是电子计算更优。“想想吧,用量子计算去记账是什么概念?” 加州伯克利劳伦斯国家实验室的负责人约翰·莎尔福(John Shalf)说。

尽管优先级下降,但缩小尺寸提高集成度的做法并未被彻底抛弃。在三栅极晶体管的基础上,到2020年左右,“栅极全包围”晶体管和纳米线将成为现实。而到20年代中期,我们可能将看到一体化3D芯片的出现,即在一整块硅片上制作多层器件。

寻找其他材料

斯坦福大学的电气工程师Subhasish Mitra和他的同事已经开发出用碳纳米管将3D存储单元层连接起来的办法,这些碳纳米管承载着层间的电流。 该研究小组认为,这样的体系结构可以将能耗降低到小于标准芯片的千分之一。

如果一定要保留电子计算的范式,也有办法,那就是寻求一种“毫伏开关”——一种在计算速度上不亚于硅晶片,但发热量显著低于硅的材料。可行的方案包括了2D类石墨烯复合材料到自旋电子材料(spintronic materials ),后者可以通过让电子快速旋转来进行计算(现在的硅材料是电子发生移动来计算)。“当你跳出现有的技术的限制,就会发展可供研究开发的领域非常多。”半导体研究联合体(Semiconductor Research Corporation,src)的物理学家托马斯·西斯 (Thomas Theis)表示。

澳门老金沙平台 7IBM的3D存储芯片微观结构

然而,这些方案目前也都仅限于实验室研究阶段,目前行业里仍未找到可以完全替代硅的材料,于是,不少研究人员开始在保留硅材料的前提下想办法,也就是从架构的角度将硅材料以全新的方式进行配置,比如走向3D:既然可以将电路蚀刻到硅平面的表面,为何不试试打造成“摩天大楼”,将表面已经蚀刻进电路的薄硅片堆积起来呈立体的形状?然而,现实中,这种方式目前只能用于纯存储类芯片,因为存储类芯片不存在发热过度的问题, 它们的电路只在与存储单元( memory cell )接触的时候才产生能耗,而这种接触发生的并不多。目前存储芯片的一些设计就采用了这种方式,比如已经被三星、美光科技使用的“混合存储立方体”(Hybrid Memory Cube,类似“夹心饼干” )设计,就是将多层存储硅晶片堆起来。

此外,另一种提高计算性能的方法是使用像“量子计算”这样的技术,该技术有望加速某些特定问题的计算速度,还有一种“神经计算”技术旨在是模拟大脑的神经元处理单元。 但是,这些替代性的技术可能需要很久才能走出实验室。 而许多研究者认为,量子计算机将为小众应用提供优势,而不是用来取代处理日常任务的数字计算。去年底,谷歌量子人工智能实验室已证明:他们的D-Wave量子计算机处理某些特定问题,比普通计算机快一亿倍。

微处理器要做成3D的难度就大很多,将一层又一层的发热物体堆积起来,只会让它们变得更热,一种解决方案是将存储和微处理器芯片完全分开,至少可以分走50%的热量(虽然在两者之间传递数据依然会产生新的热量),将它们在纳米级别上一层一层堆起来做成3D。

澳门老金沙平台 8D-Wave量子计算机

这在现实中依然很难实现,因为目前微处理器和存储芯片的制造流程完全不同,无法在同一条流水线上进行生产,要将它们堆起来,需要对芯片的结构进行全面重新设计。但是,已经有不少研究机构正在朝这个方向努力并且有希望可以成功,比如斯坦福大学的电子工程师苏哈斯施·米特拉(Subhasish Mitra )和他的团队已经设计出一种混合的芯片架构,可以将存储单元和碳纳米管做成的晶体管上下堆到一起,每层之间可以传递电流,米特拉的团队认为这种架构的耗能将只有现在的标准芯片耗能的千分之一或更低。

通过新材料、不同的量子效应,甚至超导等不可思议的新技术,半导体行业或许能继续像以往一样提高芯片集成度。如果集成度能获得明显提升,那么市场对速度更快的处理器的需求可能将再次爆发。

移动化

但目前看来,摩尔定律被打破将成为一种新常态。摩尔定律对半导体行业的指导意义正逐渐消失。

除了发热,摩尔定律遇到的第二大挑战是,计算设备走向移动化。

25年前,计算机的概念只包括台式电脑和笔记本电脑,超级电脑和数据中心基本上使用的是和台式和笔记本电脑一样的微处理器,不过就是数量多了些。但是现在,计算机的概念早已进行了延伸,智能手机、平板电脑、智能手表和其他可穿戴设备等都是新的计算设备,而这些新式计算设备对处理器的需求与其前辈电脑差别非常大。

移动应用和数据都已经向云端的服务器转移,云服务器对于微处理器的要求更高更严格,这对传统的芯片制造商产生了很大影响,里德举例说:“谷歌和亚马逊要买什么,对于英特尔决定制造什么产品有巨大的影响。”

对于移动设备,电池续航能力的重要性更加凸显,典型的智能手机的语音电话、Wi-Fi连接、蓝牙、GPS、感知触摸、磁场甚至指纹识别都是要耗电的,而且,移动设备还需要内置特殊功能的电路,用来管理电源和能耗,以保证以上各个功能不快速把电池耗尽。

对于芯片制造商来说,这些特殊要求破坏了原本半导体行业的“自动升级”的经济循环流程,从而对摩尔定律产生挑战。“原本的市场是你只需制造几种产品,但是每样的销量都有非常巨大的规模,”里德称,“新的市场里,你需要制造巨多种类的产品,每种只能买个几十万件,所以,只有在设计和生产非常便宜的情况下才可以持续下去。”

而现实生产中,将不同的技术放到同一设备中和谐运行简直就是噩梦,鲍特姆斯称:“要将不同的配件,不同的材料、电子、光子等,打包到一起和谐运行,需要新的架构、新的模拟、新的开关等等来解决。”

对于那些能源管理的特殊功能电路,设计的流程更是无比缓慢和昂贵。在加州大学伯克利分校,电子工程师阿尔伯托·圣乔瓦尼-文森特利(Alberto Sangiovanni-Vincentelli )及其团队正在对此进行改变,他们觉得人们应该通过组合各种现有的带有各种功能的电路创造新的设备,“就像搭乐高积木。” 阿尔伯托说,其挑战就在于如何让这些积木搭起来之后能够各自运营工作,但是“如果你使用旧的设计方法的话,成本就太大了。”

芯片商如今最关心的可能就是成本问题了,“摩尔定律的终结不是技术问题,而是经济问题。” 鲍特姆斯说,包括英特尔在内的一些公司,依然试图在达到量子效应之前继续缩小元件体积,但是,产品缩得越小,成本越高。

每次产品体积缩小一半,生产商就需要全新的更准确的影印石版机器。如今,建立一条全新的生产线往往需要投入几十亿美元,这个成本仅有少数几家厂商可以承受。而由移动设备带来的市场碎片化,使得筹集这样的资金更加困难。“一旦下一代的每晶体管成本超过现有的成本,产品更新就会停止。”很多业内人士认为,半导体行业已经非常接近这个“产品更新停止”的阶段。

是的,过去十年芯片行业成本的提升导致了企业间大量的重组并购,如今,世界上绝大多数的芯片生产线都属于少数几家企业比如英特尔、三星和台积电等,这些芯片制造巨头与原材料和设备供应商的关系密切,互相之间也开始协调发展,世界半导体协会制造的行业研发蓝图也因此不再至关重要 。

美国的行业研究机构src曾经长期支持行业发展蓝图,但是,三年前,src对此热情不再,“因为我们的会员公司觉得这个蓝图没那么有用了,”src的副总裁斯蒂文·希勒尼斯( Steven Hillenius)表示。src和美国半导体行业协会SIA一起,希望推动更加长期的、基本的研究日程,并且争取获得联邦基金的支持,最好是通过去年七月白宫发布的“国家战略计算倡议”(National Strategic Computing Initiative)。

src和SIA自己的研究日程于去年九月份发布,提到了未来行业面临的几大问题,首先是能源效率——特别是“物联网”带来的耗能比较大的各类智能传感器;其次设备联网也是同等重要,连接云端的各类设备互相沟通需要大量的带宽;最后是安全性,src和SIA呼吁行业开发新的抵御网络攻击和数据盗窃的安全措施。

英特尔的高级微处理器研究负责人谢加·博卡尔(Shekhar Borkar)对这一切却持乐观态度,他说:“虽然由于硅晶片的指数级增长无法持续,摩尔定律正在走向终结,但是,从消费者的角度来说,摩尔定律的含义其实表达的是他们将产品买到手中获得的价值每两年在翻番,从这个意义上讲,只要这个行业不断为设备增加新的功能,摩尔定律就能持续下去。”

“而且,各种想法都已经有了,我们要做的只是去实现它们。”

澳门老金沙平台 9

本文由金沙澳门官网发布于金沙资讯,转载请注明出处:摩尔定律已死,半导体行业何去何从

关键词: 金沙官网登陆 金沙澳门官网